	Programme Objectives	Title of the Programme
AAAA	To impart basic knowledge in the discipline of Physics including its phenomenology, theories, concepts, general principles and techniques. To enable the students to have a thorough exposure to the different branches of Physics so as to gain a comprehensive knowledge in the subject of Physics. To understand the links of Physics to other disciplines and also to the societal issues. To bridge the gap between the plus two and post graduate levels of Physics by providing a more complete and logical framework in almost all the areas of basic Physics.	Integrated M.Sc. Physics
AAA	The objective of the course is to create awareness in the field of Physics and cultivate scientific approach and research aptitude among the graduate students in various subjects of physics and emerging extensions of research activities. The task includes preparation, enhancement etc. of human resources in strengthening the activities for the development of basic scientific knowledge, skills and application of scientific approach. An independent project is included in the course so that the candidate knows about the flavour of research methodology in science.	M.Sc. Physics
AAA	The objective of the course is to cultivate scientific approach and culture of research aptitude among the post-graduate students in the field of physics and other related activities. The task includes preparation, enhancement etc. of human resources in strengthening the activities for the development of basic scientific knowledge, skills, application of scientific approach etc. so as to derive the best from the same. This helps to carry out research problem independently and individually in a perfect scientific method.	M.Phil. Physics

Programme Specific	1. Int. M.Sc. Physics - To bridge the gap between the plus
Outcome	two and post graduate levels of Physics by providing a
	more complete and logical framework in almost all the
	areas of basic Physics
	2. M.Sc. Physics - An independent project is included in
	the course so that the candidate knows about the flavour of
	research methodology in science.
	3. M.Phil. Physics - The task includes preparation,
	enhancement etc. of human resources in strengthening the
	activities for the development of basic scientific knowledge,
	skills, application of scientific approach etc. so as to derive
	the best from the same

Course Outcome: Integrated M.Sc. Physics

S. No.	Title of Subject/Course	Course Outcome
1.	Properties of Matter and	\succ To study the basics of elasticity and its
	Sound	importance in beams, girders, concepts of
		viscosity and surface tension and the various
		methods to determine the parameters
		experimentally.
		To study Free, damped and forced vibration \rightarrow
		and applications of sound.
2.	Mechanics and Relativity	 To be able analyse and explain vector nature
		of force, acceleration, momentum, torque and
		able to apply Newton's laws to physical
		problems.
		\succ Relativity deals with motions with very high
		velocities comparable to the speed of light.
3.	Practical I : General	\succ To be able to understand the concepts of
5.	- ruction - Contra	mechanics, properties of matter and sound
		through different experiments.
		 To acquire the basic trouble shooting skills
		and appreciate Physics concepts through
		experiments
4.	Optics and Spectroscopy	\succ To understand the concepts of Dispersion of
	optics and specificscopy	Light, interference, diffraction and polarization of
		light waves and their applications.
		\succ A basic knowledge of the principles which
		govern optics is essential for any science
		graduate.
		\succ To study the principles of MW, IR, Raman
		and Resonance Spectroscopy and its applications.
5.	Electricity and	 To study Gauss theorem and its applications
5.	Electromagnetism	and also the principle and types of capacitors.
		\succ To understand the principle of
		Magnetostatics, magnetic effects of electric
		current and their applications.
		\succ To understand the principle of
		electromagnetic induction and ac circuits.
6.	Practical II : Optics	The learner will be able to understand a set of \rightarrow
0.	- rueneur H · Optico	optical laws by using spectrometer,
		Interferometer etc.
7.	Basic Electronics	\succ To know the basic concepts of physics of
/.		semiconductors and basic principles of biasing
		and transistor amplifiers
		\rightarrow It will enable the student to design simple
		electronic circuits for the laboratory and home
		with thehelp of knowledge gained through this
8.	Core practical - III: Heat	course The learner will be able to understand the thermal
0.	and Electricity	
		conductivity, specific heat and voltmeter, ammeter calibration.
		animeter canoration.

9.	Thermal and Statistical	> To provide a thorough understanding on heat,
	Physics	temperature, work, energy and entropy
		> To introduce macroscopic thermodynamics
		to microscopic view through ideal gas, kinetic
		theory and natural extension to statistical
		thermodynamics.
10.	Core practical - IV:	\succ The learner will be able to understand the
	Electronics	basic working of discrete components and their
		characteristics.
		To learn to construct various oscillators
		To learn simple digital electronic
		experiments with ICs.
11.	NME- II: Biomedical	The principle, design and working of various
	Instrumentation	biomedical instruments are dealt in a simple
		manner.
		\succ It will stimulate the students to understand the design and functioning of various medical
		equipment
12.	Digital Electronics	 To learn various numbers systems
12.		 To study and apply the knowledge in some
		simple combinational digital circuits
		To know about the principle and various types \rightarrow
		of registers and counters
13.	Atomic Physics	To study in detail about the atom model
		≻To know about the internal structure of the
		atom and the electronic configuration
		> To have a detailed knowledge about the
		photoelectric effect and X-rays.
14.	Classical and Quantum	> The subject imparts an understanding of the
	mechanics	basic laws of classical mechanics i.e., Physics of
		massed particles movement are introduced.
		► Most of the experimentally observed
		phenomena in Modern Physics are explained only
		by Quantum mechanics.
		➤ This paper deals with wave mechanics, which is one formulation of Quantum mechanics
		and perturbation theory.
15.	Numerical and	\succ Basic mathematical methods which are
13.	Mathematical	required for physics problems are introduced
	Methods	 Introducing simple numerical method on
		polynomial and expose to numerical calculus.
16.	Core practical – V: Digital	> The learner will be able to understand all the
	Electronics & Computer	logic gates and operation.
	Programming In C	\succ To be able to write programmes by using C
	Language	coding
17.	Solid State Physics	\succ This paper deals with the applications of
		Physics applied to study of solids and the
		relationshipsbetween their structures and
		properties.

		This paper serves as pre-requisite to study the optional subjects such as materials science, nanoscience, etc.
18.	Nuclear Physics	 Nuclear energy has got a great significance in the present scenario. This paper gives ideas about radio activity, which has got industrial, medical, research applications etc. This paper gives ideas about Elementary particles, which is the basis of High Energy Particle Physics.
19.	SBC – II: Electronic Devices	 To present the basic tools for an understanding of the fundamental electronic devices. To develop an interest in the learning of advanced devices and their designing aspects.
20.	Elective: Energy Physics	 To understand the different kinds of Energy Sources To study the basics of Renewable & Non- renewable energy sources To learn the fundamental principles and theory of Solar, Wind energy To understand the Biogas production from Biomass To study the Ocean Energy and additional alternate energy sources.
21.	Geophysics	 To develop an interest in the learning of geophysics. To understand about the features of geophysics from different methods such as gravity, electrical, magnetic, seismic and radiometric methods etc.
22.	Astrophysics	 Enrich the students with a thorough knowledge about celestial coordinate systems. To learn the stellar classification schemes and H-R diagrams, masses and radii of stars.
23.	Acoustics	 This paper gives ideas about sound and its wave motion. This paper serves as pre-requisite to study the applications of sound. This paper gives ideas about sound and its wave motion. This paper serves as pre-requisite to study the applications of sound.
24.	Lasers and Optics	 To understand the properties and characteristics of LASER, its operation. Enable the students to learn the basic principles and concepts of Fiber optics

Course Outcome: M.Sc. Physics

S. No.	Title of Subject/Course	Course Outcome
1.	Classical Mechanics	 To demonstrate concept and understanding of the following fundamental topics in: the dynamics of system of particles, motion of rigid body, Lagrangian and Hamiltonian formulation of mechanics To represent the equations of motion for complicated mechanical systems using the Lagrangian and Hamiltonian formulation of classical mechanics. To develop familiarity with the physical concepts and facility through methods of classical mechanics. To understand the theory of Relativity.
2.	Mathematical Methods of Physics - I	 To introduce the students equip to be the basic techniques of mathematical Physics and able to solve physical problems. To identify various types of matrices and explain how one type of matrix differs from another. To develop expertise in vector differential calculus operators in order to learn Electro Magnetic Theory those are required in Physics.
3.	Quantum Mechanics – I	 To understand and explain the differences between classical and quantum mechanics To understand the idea of wave function To understand the uncertainty relations To solve Schrodinger equation for four simple problems.
4.	Electronics and Experimental methods	 To enhance comprehensive capabilities of students through understanding of electronic devices. To give clear understanding of various fabrication techniques of semiconducting devices. To understand the physical construction, working and operational characteristics of Semiconductor devices. To introduce the basic building blocks of linear integrated circuits and digital Converters.
5.	Numerical Analysis	 To demonstrate the understanding of common numerical methods and how they are used to obtain approximate solutions to

		 otherwise intractable mathematical problems. ➢ Apply numerical methods to obtain approximate solutions to mathematical problems. ➢ Derive numerical methods for various mathematical operations and tasks, such as interpolation, differentiation, integration, the solution of linear and nonlinear equations, and the solution of differential equations.
6.	Practical I – Optics and Lasers	The students will able to extract the optical constants with spectrometer and to understand the advanced experiments using lasers.
7.	Practical II - ELECTRONICS	 To measure the OP-amp characteristics and simple experiments with it. To draw the characteristics of discrete power devices. To learn the counters and registers
8.	Mathematical Methods of Physics – II	 To understand the basic concepts of group theory To solve partial differential equations with appropriate initial or boundary conditions with Green function techniques To use complex analysis in solving physical problems.
9.	Quantum Mechanics – II	 To understand time dependent perturbation theory in quantum mechanics. Tounderstand how to apply perturbation theory to describe scattering Tounderstand the operator formulation of quantum mechanics.
10.	Electromagnetic Theory	 To make the student understand the principles of electrostatics and magneto statics. To enable the student to explore the field of electrodynamics Knowledge of, physical interpretation, and ability to apply Maxwell's equations to determine field waves, potential waves, energy and charge conservation conditions
11.	Microprocessors and Microcontrollers	 An in-depth understanding of the architecture and working of microprocessors and micro controllers has become a necessity for researchers, system developers, as well as programmers To study the Architecture of 8086 microprocessor. To learn the design aspects of I/O and Memory Interfacing circuits. To study about communication and bus

		interfacing. ➤ To study the Architecture of 8051 microcontroller.
12.	Practical III – Microprocessor and Microcontrollers	 To solve the arithmetic operations using microprocessor To explore the interfacing using the microcontroller.
13.	Practical IV – Atomic and Nuclear Physics	 To carry out experiments using GM counter To measure some physical constants such h and spectroscopic g.
14.	Thermodynamics and Statistical Physics	 To understand the basics of thermodynamics and Statistical systems. To understand the basic concepts in phase transition Define the concepts of heat, work, and energy. To acquire the knowledge of various statistical distributions. To comprehend the concepts of enthalpy, phase transitions and thermodynamic functions
15.	Solid State Physics	 This course has its give an introduction to the physical properties of solids and applications This course will empower the students in the field of research of material sciences, solid state devices etc. The course requires a pre-requisite a knowledge in the basic quantum mechanics. The students will gain a knowledge in the application and designing of solid state devices.
16.	Nuclear and Particle Physics	 To study the general properties of nucleus. To study the nuclear forces and nuclear reactions. To know about the theories and models of nucleus. To understand the concept of elementary particles Understanding of various particle interactions and their interrelation Relation of basic laws of particle physics and macroscopic physics phenomena
17.	Laser and Spectroscopy	 Identify the basic components of spectroscopic instrumentation. Demonstrate a working knowledge of mass spectroscopy (MS), Ultraviolet Visible (UV-Vis) spectroscopy, Infrared (IR)

		spectroscopy, and Nuclear Magnetic
		Resonance (NMR) spectroscopy.
		> Elucidate the structures of organic
		molecules from spectral data.
		\succ To apply and use laser spectroscopic
		instruments in practice.
18.	Practical V – Solid State	\succ Learn to measure the dielectric constant
	Physics	of liquid & solid, resistivity, bandgap, ionic
		conductivity, specific heat
		To identify phase transition in
10		ferroelectric materials
19.	Practical VI – Materials	To learn the preparation of thinfilm
	Science	\succ To analyse the XRD pattern to get cell,
		grain size
		\succ To the analyse the sample data from SEM ETIP. UV Via an extreme to mater
20.	Materials Science	SEM, FTIR, UV-Vis spectrophotometer
20.	Materials Science	➤ To Give basic knowledge of science behind materials & physical metallurgy.
		\succ Introduce the concept of structure
		property relations, mechanical behaviour of
		materials, phase diagram, heat treatment,
		failure of materials & their protection,
		applications of Recent materials.
		\rightarrow Develop intuitive understanding of the
		subject to present a wealth of real world
		engineering examples to give students a feel
		of how material science is useful in
		engineering practices.
~ ~		

Course Outcome: M.Phil. Physics

S. No.	Title of Subject/Course	Course Outcome
1.	Research	➢ To provide a qualitative idea on the
	Methodology	fundamentals of research and types and methods of
		research.
		\succ This paper will serve as an eye opener for
		students keen in research activities particularly in
		Physics
		\succ To equip on publishing the research outputs
		adopting accepted standards
2.	Advanced Physics	\succ To apply the concepts and theories of a range
		of advanced topics in physics
		\succ To demonstrate an understanding of the close
		relationship between scientific research and the
		development of new knowledge in a global context.
3.	Materials Science of Thin	\succ This course aims at developing a
	Films	comprehensive understanding of thin film
		deposition principles and techniques.
		\succ Film properties are correlated to the material
		used, as well as the microstructure that has been
		developed during the deposition process.

		Students will acquire the knowledge and develop the skill to design thin film systems and select appropriate deposition techniques through materials, microstructure, property and economic considerations.
4.	Magnetism in Solids	 To understand the source of a materials magnetic behaviour and be able to distinguish types of magnetism To identify crystal lattices and their structures
5.	Energy Storage Materials	➤To introduce the basic concepts, physical/chemical principles and key materials applied in the latest technologies for energy conversion and storage processes, with focuses of developing a comprehensive understanding of materials used for energy conversion and storage devices.
6.	Physical Properties of Materials	 To introduce the tensor aspect of physical properties and their relation to symmetry To learn mechanical, electrical, optical, magnetic, ferroelectric, magneto optic tensor properties and their measurements.
7.	Crystal Growth and Characterization	 To provide a qualitative idea on the fundamentals of growing crystals and characterizing the grown samples. This paper will serve as an eye opener for students keen in research activities particularly in experimental physics.
8.	Nanophysics	 ➤The course will introduce the students to the rapidly developing field of nanoscience and technology with special focus on the methods of synthesis, characterization techniques and applications of nanomaterials with physics emphasis. ➤The course is expected to provide the necessary understanding in nanotechnology and the students must be able to perform their project works related to the synthesis and characterization of nanomaterials by direct experience.
9.	Advanced Nuclear Physics	 The students should able to use symmetries, conservation laws and kinematical conditions in order to give physical explanations for nuclear physics process. Able to calculate nuclear physics quantities and processes. Describe how the structure of nuclei is related to the many-body system of interacting nucleons